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Abstract—  The several corresponding servers may send the 
data concurrently in a circle manner to a specific receiver. For 
example, data center applications such as Map-Reduce and 
Search applications are using many-to-one TCP traffic pattern 
i.e. parallel data delivery. While TCP connection is slow down 
the concurrent data deliver. The data delivery delay ensured 
the packet loss and time out in the TCP connection namely 
called TCP incast congestion. This congestion may reduce the 
performance of TCP connection such as increase the waiting 
time and increase bandwidth utilization.  The proposed system 
is implemented for avoid the ICTCP congestion with assist of 
receive(r)-window-based congestion control algorithm.  
Initially, the proposed algorithm shared the available 
bandwidth namely called quota for all TCP connections. Next, 
assign the control interval to every TCP connections using 
Round Trip Time. The control interval will be 2*RTT for 
every TCP connections. Finally, adjust (increase/decrease) 
receive-widow size based on two threshold values, available 
quota, Round Trip Time, current TCP connection throughput 
in receiver side and expected throughput of the TCP 
connection. If ratio of difference between measured 
throughput and expected throughput is less than one expected 
throughput increase the receive-window-size. Otherwise, the 
ratio is large decrease the receive window. Further, improve 
our proposed system that converted many-to-many traffic 
congestion into many-to-many traffic congestion 

Keywords— Data-Center ,incast congestion, Round Trip Time 
,TCP. 

I. INTRODUCTION 

Internet datacenters support a myriad of services and 
applications. Companies like Google, Microsoft, Yahoo, 
and Amazon use datacenters for web search, storage, e-
commerce, and large-scale general computations. Business 
cost efficiencies mean that datacenters use existing 
technology. In particular, the vast majority of datacenters 
use TCP for communication between nodes. TCP is a 
mature technology that has survived the test of time and 
meets the communication needs of most applications. 
However, the unique workloads, scale, and environment of 
the Internet datacenter violate the WAN assumptions on 
which TCP was originally designed. For example, in 
contemporary operating systems such as Linux, the default 
RTO timer value is set to 200ms, a reasonable value for 
WAN, but 2-3 orders of magnitude greater than the average 
roundtrip time in the datacenter. 

As a result, we discover new shortcomings in 
technologies like TCP in the high-bandwidth, low-latency 
datacenter environment. One communication pattern, 
termed “Incast” by other researchers, elicits a pathological 
response from popular implementations of TCP. In the 

Incast communication pattern, a receiver issues data 
requests to multiple senders. The senders, upon receiving 
the request, concurrently transmit a large amount of data to 
the receiver. The data from all senders traverses a 
bottleneck link in a many-to-one fashion. As the number of 
concurrent senders increases, the perceived application-
level throughput at the receiver collapses. The receiver 
application sees goodput that is orders of magnitude lower 
than the link capacity. The incast pattern potentially arises 
in many typical datacenter applications. For example, in 
cluster storage, when storage nodes respond to requests for 
data, in websearch, when many workers respond near 
simultaneously to search queries, and in batch processing 
jobs like Map Reduce , in which intermediate key-value 
pairs from many Mappers are transferred to appropriate 
Reducers during the “shuffle” stage. 

II.  CONGESTION  IN  DATA-CENTER NETWORKS 

  We first perform congestion avoidance at the system level. 
We then use the per-flow state to finely tune the receive 
window of each connection on the receiver side. The 
technical novelties of this work are as follows:1) To 
perform congestion control on the receiver side, we use the 
available bandwidth on the network interface as a quota to 
coordinate the receive window increase of all incoming 
connections. 2) Our per-flow congestion control is 
performed independently of the slotted time of the round-
trip time (RTT) of each connection, which is also the 
control latency in its feedback loop. difference between the 
measured and expected throughput over the expected. This 
allows us to estimate the throughput requirements from the 
sender side and adapt the receiver window accordingly. We 
also find that live RTT is necessary for throughput 
estimation as we have observed that TCP RTT in a high-
bandwidth low-latency network increases with throughput, 
even if link capacity is not reached. 
 Consider many-to-one or many-to-many traffic 
pattern The several synchronized servers will send the data 
file to one/multiple receivers concurrently in a circle 
manner. All TCP connections are shared the same 
bandwidth group.  The connections final performance is 
determined by the slowest TCP connection, which may 
direct to connection timeout or packet loss. 
The several corresponding servers may send the data 
concurrently in a circle manner to a specific receiver. For 
example, data center applications such as Map-Reduce and 
Search applications are using many-to-one TCP traffic 
pattern i.e. parallel data delivery. While TCP connection is 
slow down the concurrent data deliver. The data delivery 
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delay ensured the packet loss and time out in the TCP 
connection namely called TCP incast congestion. This 
congestion may reduce the performance of TCP connection 
such as increase the waiting time and increase bandwidth 
utilization.  The proposed system is implemented for avoid 
the ICTCP congestion with assist of receive(r)-window-
based congestion control algorithm.  Initially, the proposed 
algorithm shared the available bandwidth namely called 
quota for all TCP connections. Next, assign the control 
interval to every TCP connections using Round Trip Time. 
The control interval will be 2*RTT for every TCP 
connections. Finally, adjust (increase/decrease) receive-
widow size based on two threshold values, available quota, 
RoundTripTime, current TCP connection throughput in 
receiver side   and expected throughput of the TCP 
connection. If ratio of difference between measured 
throughput and expected throughput is less than one 
expected throughput increase the receive-window-size. 
Otherwise, the ratio is large decrease the receive window. 
To improve our proposed system, the proposed receive(r)-
window-based congestion control algorithm implemented 
in many-to-many traffic pattern (For example international 
share trading,e-applications such as multimedia 
sharing).The proposed algorithm implemented in every 
receiver side.  Every receiver will group into same 
bandwidth i.e. sharing same bandwidth. 

III. ESTABLISHMENT OF CONNECTIONS BETWEEN  DATA-
CENTRES AND USERS 

A. Network Creation 

First install number of sender servers at data center side. 
Then install one switch device for switching the data 
packets from multiple senders  to receivers. 

B. Many–to-One 

   In this module, multiple servers act as a sender (data 
center) and single system act as a receiver. The receiver 
sends the request to corresponding data center. Once 
multiple servers receive the request, create TCP connection 
between them. Then initiate the sending window size based 
on the capacity of server’s network interface. Then request 
file divided into number of packets and then ready to send 
the data packets corresponding receiver. 

C. Control Interval 

 Receiver and multiple servers share the available 
bandwidth based on the network interface capacity.  Data 
packets are sending to receiver based on the time. The time 
has split into number of slots. Every slot categorized into 
two sub slots such as first and second.   Once connection 
has TCP established, receiver initialize the receiver window 
size as 2*maximum segmentation size. Then, measure 
control interval to adjust the receive window size. The 
control interval is measured by Round Trip Time. Then 
measure the sub slot length using control interval of all 
active TCP connections. 

D.  Receive Window Adjustment 

The receiver side receive-window of every TCP connection 
is adjusted based on TCP connection throughput.  The TCP 

connection throughput is calculated using current 
throughput of TCP connection and expected throughput.    
The receive window is increased when the ratio of the 
difference between measured and expected throughput over 
the expected one is small, otherwise decrease the receive 
window when the ratio is large. 

E.  Many-to-Many 

In this module, multiple server acts as a senders (data-
center)and multiple request system act as receivers. Every 
receiver sends the request to every server center to obtain 
same data. All receivers and senders share the same 
bandwidth and same switch. Every receiver activate the 
above discussed receive window adjustment scheme for 
effective congestion avoidance. 

IV.  ICTCP ALGORITHM 

ICTCP provides a receive-window-based congestion 
control algorithm for TCP at the end-system. The receive 
windows of all low-RTT TCP connections are jointly 
adjusted to control throughput on incast congestion. Here is 
that  how to set the receive window of a TCP connection. 

A.  Control Trigger 

Available BandwidthWithout loss of generality, we assume 
there is one network interface on a receiver server, and 
define symbols corresponding to that interface.  
Our algorithm can be applied to a scenario where the 
receiver has multiple interfaces, and the connections on 
each interface should perform our algorithm 
independently.Assume the link capacity of the interface on 
the receiver server is C . Define the bandwidth of the total 
incoming traffic observed on that interface as BWT, which 
includes all types of packets, i.e., broadcast, multicast, 
unicast of UDP or TCP, etc. Then, we define the available 
bandwidth BWA on that interface as  
 

BWA =    max(0,α×C -BWT) .............(1) 
 

where α [0,1 is a parameter to absorb potential 
oversubscribed bandwidth during window adjustment. A 
larger α (closer to 1) indicates the need to more 
conservatively constrain the receive window and higher 
requirements for the switch buffer to avoid overflow ,a 
lower α indicates the need to more aggressively constrain 
the receive window, but throughput could be  necessarily 
throttled. In all of our implementations  and experiments, 
we have a fixed setting of ߙ = 0.9 .  
In ICTCP, we use available bandwidth   BWA as the quota 
for all incoming connections to increase the receive window 
for higher throughput. Each flow should estimate the 
potential throughput increase before its receive window is 
increased. Only when there is enough quota (BWA) can the 
receive window be increased, and the corresponding quota 
is consumed to prevent bandwidth oversubscription. 
To estimate the available bandwidth on  the interface and 
provide a quota for a later receive window increase, we 
divide the time into slots. Each slot consists of two subslots 
of the same length T . For each network interface, we 
measure all the traffic received in the first subslot and use it 
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to calculate the available bandwidth as a quota for window 
increase on the second subslot. The receive window of any 
TCP connection is never increased at the first subslot, but 
may be decreased when congestion is detected or the 
receive window is identified as being over satisfied,In Fig. 
1, the arrowed line marked by “Global” denotes the slot 
allocation for available bandwidth estimation on a network 
interface. The first subslot is marked in gray. During the 
first subslot, none of the connections’ receive windows can 
be increased (but they can be decreased if needed). The 
second subslot is marked in white in Fig. 1. In the second 
subslot, the receive window of any TCP connection can be 
increased, but the total estimated increased throughput of 
all connections in the second subslot must be less than the 
available bandwidth observed in the first subslot. Note that 
a decrease of any receive window does not increase the 
quota, as the quota will only be  reset by incoming traffic in 
the next first subslot. We discuss how to choose T and its 
relationship to the per-flow control interval next.  

B.Per-Connection Control Interval: 2* RTT 

 In ICTCP, each connection adjusts its receive window only 
when an ACK is sending out on that connection. No 
additional pure TCP ACK packets are generated solely for 
receive window adjustment, so that no traffic is wasted. For 
a TCP connection, after an ACK is sent out, the data packet 
corresponding to that ACK arrives one RTT later. As a 
control system, the latency on the  feedback loop is one 
RTT for each TCP connection, respectively Meanwhile, to 
estimate the throughput of a TCP connection for a receive 
window adjustment, the shortest timescale is an RTT for 
that connection. Therefore, the control interval for a TCP 
connection is 2*RTT in ICTCP, as we need one RTT 
latency for the adjusted window to take effect, and one 
additional RTT to measure the achieved throughput with 
the newly adjusted receive window. Note that the window 
adjustment interval is performed per connection. We use 
connections i and j to represent two arbitrary TCP 
connections in Fig. 1 to show that one connection’s receive 
window adjustment is independent from the other. 
The relationship of subslot length T and any flow’s control 
interval is as follows: Since the major purpose of available 
bandwidth estimation on the first subslot is to provide a 
quota for window adjustment on the  second subslot. length 
T should be determined by the control intervals of all active 
connections. 
The changed throughput of any connection is with its RTT, 
and thus T should be with the RTT to represent the changes 
in available bandwidth .We use weighted average RTT of 
all TCP connections as T , i.e.,T=∑iwiRTTi . The weight wi 
is the normalized traffic volume of connection i that has 
updated in RTTi the last time period T.   In Fig. 1, we 
illustrate the relationship of two a rbitrary TCP connections 
i/j with RTTi/j and the system estimation subinterval T . 
Each connection adjusts its receive window based on the 
observed RTT. The time it takes for a connection to 
increase its receive window is marked with an up arrow in 
Fig. 1. For  TCP connection i, if “now” is in the second 
global subslot and the elapsed time is larger than2*RTTi 

since its last receive window adjustment, it may increase its 

window based on the newly observed TCP throughput and 
current available bandwidth. 

 

 
Fig. 1 Slotted time on global (all connections on that interface) and two 

arbitrary TCP connections i/j are independent. 

 

C.Window Adjustment on Single Connection 

For any ICTCP connection, the receive window is adjusted 
based on its incoming measured throughput (denoted as bm ) 
and its expected throughput (denoted as be). The measured 
throughput represents the achieved throughput on a TCP 
connection and also implies the current requirements of the 
application over that TCP connection. The expected 
throughput represents our expectation for the throughput on 
that TCP connection if the throughput is only constrained 
by the receive window. 
Our idea for receive window adjustment is to increase the 
receive window when the ratio of the difference between 
measured and expected throughput over the expected one is 
small, and to decrease the receive window when the ratio is 
large. A similar concept has previously been introduced in 
TCP Vegas  but it uses the throughput difference instead of 
the ratio of throughput difference, and it is designed for the 
congestion window on the sender side to pursue available 
bandwidth. ICTCP window adjustment sets the receive 
window of a TCP connection to a value that represents its 
current application’s requirements. An oversized receive 
window is a hidden problem as the throughput of that 
connection may reach the expected one at any time, and the 
traffic surge may overflow the switch buffer, a situation that 
is hard to predict and avoid.The measured throughput	ܾ of 
connection i is obtained and updated for every RTTi, where 
RTTi is the RTT of connection i . For every RTTi on 
connection i , we obtain a sample of current throughput, 
denoted as ܾ௦ , calculated as the total number of received 
bytes divided by the time interval RTTi .We smooth the 
measured throughput using the exponential filter as 
 b୧,୬ୣ୵୫  =max (b୧ୱ ,β*b୧,୭୪ୢ୫ +(1-β)*b୧ୱ                (2) 
 
β is the exponential factor, and the default value of β is set 
to 0.75. Note that the max procedure here is to update 
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quickly if the receive window is increased, especially when 
the receive window is doubled. The expected throughput of 
connection i is obtained as 
 ܾ = ,ܾ)	ݔܽ݉  i/RTTi)                       (3)݀݊ݓݎ
 
 where ݀݊ݓݎi is the receive window of connection i. We 
have the max procedure to ensure	ܾ ≤ ܾ.We define the 
ratio of throughput difference  ݀	as the ratio of the 
difference of the measured and expected throughput over 
the expected one for connection i  
 																																						݀ = ି .                              (4) 

By definition, we haveܾ ≤ ܾ , thus 	݀€[0,1]. We have 
two thresholds γ1andγ2 (γ2>γ1 ) to differentiate three cases 
for receive window adjustment: 
 
1) ݀ ≤  γ1or ݀ ≤  MSSi/rwndi

2 : Increases the receive 
window if it is in the global second subslot and there is 
enough quota of available bandwidth on the network 
interface; decreases the quota correspondingly if the receive 
window is increased.  
 
2) ݀ > γ2 :Decrease the receive window by 1 MSS3 if this 
condition holds for three continuous RTT. The minimal 
receive window is 2*MSS. 
 
3) Otherwise, keep the current receive window.The 
available bandwidth calculated at the end of the first subslot 
is used for the quota of the second subslot right after the 
first one. The potential throughput increase of connection is 
estimated as the increase in the receive window divided by 
RTTi .The quota is consumed by First Come First Service 
(FIFS), determined by the order of ACKs sent on the 
second subslot.In all of our experiments, we had γ1=0.1 and 
γ2=0.5 . Similar to TCP’s congestion window increase at 
the sender, the increase of the receive window on any 
ICTCP connection consists of two phases: slow start and 
congestion avoidance. If there is enough quota in the slow 
start phase, the receive window is doubled, while it is 
enlarged by atmost oneMSS in the congestion avoidance 
phase. A newly established or prolonged idle connection is 
initiated in the slow start phase. Whenever the second and 
third conditions are met, or the first condition is met but 
there is not enough quota on the receiver side, the 
connection goes into the congestion avoidance phase. 

D Fairness Controller for Multiple Connections 

When the receiver detects that the available bandwidth has 
become smaller than the threshold, ICTCP starts to 
decrease the receiver window of the selected connections to 
prevent congestion. Considering that multiple active TCP 
connections typically work on the same job at the same 
time in a data center, we have sought a method that can 
achieve fair sharing for all connections without sacrificing 
throughput. Note that ICTCP does not adjust the receive 
window for flows with an RTT larger than  2 ms, so 
fairness is only considered among low-latency flows. 

In our experiment, we decrease the receive window for 
fairness when BWA <0.2C. This condition is designed for 
high band width networks, where link capacity is 
underutilized most of the time. If there is still enough 
available bandwidth, we argue that the requirement of better 
fairness is not strong considering the potential impact on 
achieved throughput when decreasing the receive window. 
The purpose of the 0.2C gap is to leave enough room for 
other flows to increase their receive window, and should be 
larger than the increased throughput when the receive 
window of a flow is increased by 1 MSS.We adjust the 
receive window to achieve fairness for incoming TCP 
connections with low latency as follows: 1) For a window 
decrease, we cut the receive window by 1 MSS, for some 
selected TCP connections. We select those connections that 
have a receive window larger than the average window 
value of all connections. 2) For a window increase, this is 
automatically achieved by our window adjustment 
described in  this Section , as the receive window is only 
increased by 1 MSS during congestion avoidance. In 
principle, the receive window decrease only happens when 
the available bandwidth on that interface is small. 
Furthermore, the connection with the larger receive window 
is decreased slightly to achieve fairness. If all connections 
happen to have the same receive window, then none of 
them decrease the receive window. 
Readers may raise some questions concerning our 
interpretation of fairness to address a congestion control 
scheme.TCP uses additive increase multiplicative decrease 
(AIMD) to achieve both stability and fairness among flows 
sharing the same bottleneck. However, MD happens only 
when packet loss is observed for a TCP connection. In 
DCTCP, packet loss during  incast  congestion due to buffer 
overflow is largely eliminated. 
Consider a scenario in which some flows have a large 
receive window (because they started earlier) while others 
have a much smaller receive window (because they started 
later), and the link capacity is almost reached. In this case, 
none of the connections can increase their receive windows 
as there is not enough available bandwidth. This situation 
may persist as long as there is no packet loss so that 
unfairness between flows becomes an issue. Therefore, we 
propose slightly reducing the receive window for flows that 
have a larger receive window, and the throughput of all 
TCP connections should smoothly converge. 

CONCLUSIONS 

This implemented the ICTCP to improve TCP 
performance for TCP incast in many-to-many data-center 
networks. In contrast to previous approaches that used a 
fine-tuned timer for faster retransmission, we focus on a 
receiver-based congestion control algorithm to prevent 
packet loss. ICTCP adaptively adjusts the TCP receive 
window based on the ratio of the difference of achieved and 
expected per-connection throughputs over expected 
throughput, as well as the last-hop available bandwidth to 
the receiver. In future, the proposed mechanism can be 
implemented in real time data centers and then evaluate 
their performance. 

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1906



ACKNOWLEDGMENT 

The authors are grateful to express sincere thanks and 
gratitude to our Professor and HOD, Dr.E.Poovammal, 
Department of Computer Science and Engineering, SRM 
University for her encouragement and the facilities that 
were offered to me for carrying out this project. And we 
take this opportunity to thank our Director, 
Dr.C.Muthamizchelvan, Ph.D, Faculty of Engineering and 
Technology, SRM University for providing us with 
excellent infrastructure that is required for the development 
of our project. 

REFERENCES 
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing 

on large clusters,” in Proc. OSDI, 2004, p. 10. 
[2]  M. Alizadeh, A. Greenberg, D.Maltz, J. Padhye, P. Patel, 

B.Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP 
(DCTCP),” in Proc. SIGCOMM, 2010, pp. 63–74. 

[3] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale 
storage cluster: Delivering scalable high bandwidth storage,” in 
Proc. SC, 2004, p. 53 

[4] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger, 
G. Gibson, and S. Seshan, “Measurement and analysis of TCP 
throughput collapse in cluster-based storage systems,” in Proc. 
USENIX FAST, 2008, Article no. 12 

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, 
and S. Lu, “BCube: A high performance, server-centric network 
architecture for modular data centers,” in Proc. ACM SIGCOMM, 
2009, pp. 63–74. 

[6] R. Prasad, M. Jain, and C. Dovrolis, “Socket buffer auto-sizing for 
high-performance data transfers,” J. Grid Comput., vol. 1, no. 4, pp. 
361–376, 2003. 

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion 
control for TCP in data center networks,” in Proc. CoNEXT, 2010, 
Article no. 13 

[8] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion 
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 
13, no. 8, pp. 1465–1480, Oct. 1995. 

[9]  R. Braden, “Requirements for internet hosts—Communication 
layers,” RFC1122, Oct. 1989. 

[10] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high 
performance,” RFC1323, May 1992. 

[11] Y. Chen, R. Griffith, J. Liu, R. Katz, and A. Joseph, “Understanding 
TCP incast throughput collapse in datacenter networks,” in Proc. 
WREN, 2009, pp. 73–82. 

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity 
data center network architecture,” in Proc. ACMSIGCOMM, 2008, 
pp. 

[13] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion 
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 
13, no. 8, pp. 1465–1480, Oct. 1995. 

[14] http://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm. 
 

 

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1907




