
Congestion Control for TCP in Data-Center
Networks

Samba Siva Reddy Maripalli# , Abirami G*

 #M.Tech, Computer Science and Engineering, SRM University, Chennai, India

 *Asst professor .Department of Computer Science and Engineering SRM University, India

Abstract— The several corresponding servers may send the
data concurrently in a circle manner to a specific receiver. For
example, data center applications such as Map-Reduce and
Search applications are using many-to-one TCP traffic pattern
i.e. parallel data delivery. While TCP connection is slow down
the concurrent data deliver. The data delivery delay ensured
the packet loss and time out in the TCP connection namely
called TCP incast congestion. This congestion may reduce the
performance of TCP connection such as increase the waiting
time and increase bandwidth utilization. The proposed system
is implemented for avoid the ICTCP congestion with assist of
receive(r)-window-based congestion control algorithm.
Initially, the proposed algorithm shared the available
bandwidth namely called quota for all TCP connections. Next,
assign the control interval to every TCP connections using
Round Trip Time. The control interval will be 2*RTT for
every TCP connections. Finally, adjust (increase/decrease)
receive-widow size based on two threshold values, available
quota, Round Trip Time, current TCP connection throughput
in receiver side and expected throughput of the TCP
connection. If ratio of difference between measured
throughput and expected throughput is less than one expected
throughput increase the receive-window-size. Otherwise, the
ratio is large decrease the receive window. Further, improve
our proposed system that converted many-to-many traffic
congestion into many-to-many traffic congestion

Keywords— Data-Center ,incast congestion, Round Trip Time
,TCP.

I. INTRODUCTION

Internet datacenters support a myriad of services and
applications. Companies like Google, Microsoft, Yahoo,
and Amazon use datacenters for web search, storage, e-
commerce, and large-scale general computations. Business
cost efficiencies mean that datacenters use existing
technology. In particular, the vast majority of datacenters
use TCP for communication between nodes. TCP is a
mature technology that has survived the test of time and
meets the communication needs of most applications.
However, the unique workloads, scale, and environment of
the Internet datacenter violate the WAN assumptions on
which TCP was originally designed. For example, in
contemporary operating systems such as Linux, the default
RTO timer value is set to 200ms, a reasonable value for
WAN, but 2-3 orders of magnitude greater than the average
roundtrip time in the datacenter.

As a result, we discover new shortcomings in
technologies like TCP in the high-bandwidth, low-latency
datacenter environment. One communication pattern,
termed “Incast” by other researchers, elicits a pathological
response from popular implementations of TCP. In the

Incast communication pattern, a receiver issues data
requests to multiple senders. The senders, upon receiving
the request, concurrently transmit a large amount of data to
the receiver. The data from all senders traverses a
bottleneck link in a many-to-one fashion. As the number of
concurrent senders increases, the perceived application-
level throughput at the receiver collapses. The receiver
application sees goodput that is orders of magnitude lower
than the link capacity. The incast pattern potentially arises
in many typical datacenter applications. For example, in
cluster storage, when storage nodes respond to requests for
data, in websearch, when many workers respond near
simultaneously to search queries, and in batch processing
jobs like Map Reduce , in which intermediate key-value
pairs from many Mappers are transferred to appropriate
Reducers during the “shuffle” stage.

II. CONGESTION IN DATA-CENTER NETWORKS

 We first perform congestion avoidance at the system level.
We then use the per-flow state to finely tune the receive
window of each connection on the receiver side. The
technical novelties of this work are as follows:1) To
perform congestion control on the receiver side, we use the
available bandwidth on the network interface as a quota to
coordinate the receive window increase of all incoming
connections. 2) Our per-flow congestion control is
performed independently of the slotted time of the round-
trip time (RTT) of each connection, which is also the
control latency in its feedback loop. difference between the
measured and expected throughput over the expected. This
allows us to estimate the throughput requirements from the
sender side and adapt the receiver window accordingly. We
also find that live RTT is necessary for throughput
estimation as we have observed that TCP RTT in a high-
bandwidth low-latency network increases with throughput,
even if link capacity is not reached.
 Consider many-to-one or many-to-many traffic
pattern The several synchronized servers will send the data
file to one/multiple receivers concurrently in a circle
manner. All TCP connections are shared the same
bandwidth group. The connections final performance is
determined by the slowest TCP connection, which may
direct to connection timeout or packet loss.
The several corresponding servers may send the data
concurrently in a circle manner to a specific receiver. For
example, data center applications such as Map-Reduce and
Search applications are using many-to-one TCP traffic
pattern i.e. parallel data delivery. While TCP connection is
slow down the concurrent data deliver. The data delivery

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1903

delay ensured the packet loss and time out in the TCP
connection namely called TCP incast congestion. This
congestion may reduce the performance of TCP connection
such as increase the waiting time and increase bandwidth
utilization. The proposed system is implemented for avoid
the ICTCP congestion with assist of receive(r)-window-
based congestion control algorithm. Initially, the proposed
algorithm shared the available bandwidth namely called
quota for all TCP connections. Next, assign the control
interval to every TCP connections using Round Trip Time.
The control interval will be 2*RTT for every TCP
connections. Finally, adjust (increase/decrease) receive-
widow size based on two threshold values, available quota,
RoundTripTime, current TCP connection throughput in
receiver side and expected throughput of the TCP
connection. If ratio of difference between measured
throughput and expected throughput is less than one
expected throughput increase the receive-window-size.
Otherwise, the ratio is large decrease the receive window.
To improve our proposed system, the proposed receive(r)-
window-based congestion control algorithm implemented
in many-to-many traffic pattern (For example international
share trading,e-applications such as multimedia
sharing).The proposed algorithm implemented in every
receiver side. Every receiver will group into same
bandwidth i.e. sharing same bandwidth.

III. ESTABLISHMENT OF CONNECTIONS BETWEEN DATA-
CENTRES AND USERS

A. Network Creation

First install number of sender servers at data center side.
Then install one switch device for switching the data
packets from multiple senders to receivers.

B. Many–to-One

 In this module, multiple servers act as a sender (data
center) and single system act as a receiver. The receiver
sends the request to corresponding data center. Once
multiple servers receive the request, create TCP connection
between them. Then initiate the sending window size based
on the capacity of server’s network interface. Then request
file divided into number of packets and then ready to send
the data packets corresponding receiver.

C. Control Interval

 Receiver and multiple servers share the available
bandwidth based on the network interface capacity. Data
packets are sending to receiver based on the time. The time
has split into number of slots. Every slot categorized into
two sub slots such as first and second. Once connection
has TCP established, receiver initialize the receiver window
size as 2*maximum segmentation size. Then, measure
control interval to adjust the receive window size. The
control interval is measured by Round Trip Time. Then
measure the sub slot length using control interval of all
active TCP connections.

D. Receive Window Adjustment

The receiver side receive-window of every TCP connection
is adjusted based on TCP connection throughput. The TCP

connection throughput is calculated using current
throughput of TCP connection and expected throughput.
The receive window is increased when the ratio of the
difference between measured and expected throughput over
the expected one is small, otherwise decrease the receive
window when the ratio is large.

E. Many-to-Many

In this module, multiple server acts as a senders (data-
center)and multiple request system act as receivers. Every
receiver sends the request to every server center to obtain
same data. All receivers and senders share the same
bandwidth and same switch. Every receiver activate the
above discussed receive window adjustment scheme for
effective congestion avoidance.

IV. ICTCP ALGORITHM

ICTCP provides a receive-window-based congestion
control algorithm for TCP at the end-system. The receive
windows of all low-RTT TCP connections are jointly
adjusted to control throughput on incast congestion. Here is
that how to set the receive window of a TCP connection.

A. Control Trigger

Available BandwidthWithout loss of generality, we assume
there is one network interface on a receiver server, and
define symbols corresponding to that interface.
Our algorithm can be applied to a scenario where the
receiver has multiple interfaces, and the connections on
each interface should perform our algorithm
independently.Assume the link capacity of the interface on
the receiver server is C . Define the bandwidth of the total
incoming traffic observed on that interface as BWT, which
includes all types of packets, i.e., broadcast, multicast,
unicast of UDP or TCP, etc. Then, we define the available
bandwidth BWA on that interface as

BWA = max(0,α×C -BWT)(1)

where α [0,1 is a parameter to absorb potential
oversubscribed bandwidth during window adjustment. A
larger α (closer to 1) indicates the need to more
conservatively constrain the receive window and higher
requirements for the switch buffer to avoid overflow ,a
lower α indicates the need to more aggressively constrain
the receive window, but throughput could be necessarily
throttled. In all of our implementations and experiments,
we have a fixed setting of ߙ = 0.9 .
In ICTCP, we use available bandwidth BWA as the quota
for all incoming connections to increase the receive window
for higher throughput. Each flow should estimate the
potential throughput increase before its receive window is
increased. Only when there is enough quota (BWA) can the
receive window be increased, and the corresponding quota
is consumed to prevent bandwidth oversubscription.
To estimate the available bandwidth on the interface and
provide a quota for a later receive window increase, we
divide the time into slots. Each slot consists of two subslots
of the same length T . For each network interface, we
measure all the traffic received in the first subslot and use it

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1904

to calculate the available bandwidth as a quota for window
increase on the second subslot. The receive window of any
TCP connection is never increased at the first subslot, but
may be decreased when congestion is detected or the
receive window is identified as being over satisfied,In Fig.
1, the arrowed line marked by “Global” denotes the slot
allocation for available bandwidth estimation on a network
interface. The first subslot is marked in gray. During the
first subslot, none of the connections’ receive windows can
be increased (but they can be decreased if needed). The
second subslot is marked in white in Fig. 1. In the second
subslot, the receive window of any TCP connection can be
increased, but the total estimated increased throughput of
all connections in the second subslot must be less than the
available bandwidth observed in the first subslot. Note that
a decrease of any receive window does not increase the
quota, as the quota will only be reset by incoming traffic in
the next first subslot. We discuss how to choose T and its
relationship to the per-flow control interval next.

B.Per-Connection Control Interval: 2* RTT

 In ICTCP, each connection adjusts its receive window only
when an ACK is sending out on that connection. No
additional pure TCP ACK packets are generated solely for
receive window adjustment, so that no traffic is wasted. For
a TCP connection, after an ACK is sent out, the data packet
corresponding to that ACK arrives one RTT later. As a
control system, the latency on the feedback loop is one
RTT for each TCP connection, respectively Meanwhile, to
estimate the throughput of a TCP connection for a receive
window adjustment, the shortest timescale is an RTT for
that connection. Therefore, the control interval for a TCP
connection is 2*RTT in ICTCP, as we need one RTT
latency for the adjusted window to take effect, and one
additional RTT to measure the achieved throughput with
the newly adjusted receive window. Note that the window
adjustment interval is performed per connection. We use
connections i and j to represent two arbitrary TCP
connections in Fig. 1 to show that one connection’s receive
window adjustment is independent from the other.
The relationship of subslot length T and any flow’s control
interval is as follows: Since the major purpose of available
bandwidth estimation on the first subslot is to provide a
quota for window adjustment on the second subslot. length
T should be determined by the control intervals of all active
connections.
The changed throughput of any connection is with its RTT,
and thus T should be with the RTT to represent the changes
in available bandwidth .We use weighted average RTT of
all TCP connections as T , i.e.,T=∑iwiRTTi . The weight wi
is the normalized traffic volume of connection i that has
updated in RTTi the last time period T. In Fig. 1, we
illustrate the relationship of two a rbitrary TCP connections
i/j with RTTi/j and the system estimation subinterval T .
Each connection adjusts its receive window based on the
observed RTT. The time it takes for a connection to
increase its receive window is marked with an up arrow in
Fig. 1. For TCP connection i, if “now” is in the second
global subslot and the elapsed time is larger than2*RTTi

since its last receive window adjustment, it may increase its

window based on the newly observed TCP throughput and
current available bandwidth.

Fig. 1 Slotted time on global (all connections on that interface) and two

arbitrary TCP connections i/j are independent.

C.Window Adjustment on Single Connection

For any ICTCP connection, the receive window is adjusted
based on its incoming measured throughput (denoted as bm)
and its expected throughput (denoted as be). The measured
throughput represents the achieved throughput on a TCP
connection and also implies the current requirements of the
application over that TCP connection. The expected
throughput represents our expectation for the throughput on
that TCP connection if the throughput is only constrained
by the receive window.
Our idea for receive window adjustment is to increase the
receive window when the ratio of the difference between
measured and expected throughput over the expected one is
small, and to decrease the receive window when the ratio is
large. A similar concept has previously been introduced in
TCP Vegas but it uses the throughput difference instead of
the ratio of throughput difference, and it is designed for the
congestion window on the sender side to pursue available
bandwidth. ICTCP window adjustment sets the receive
window of a TCP connection to a value that represents its
current application’s requirements. An oversized receive
window is a hidden problem as the throughput of that
connection may reach the expected one at any time, and the
traffic surge may overflow the switch buffer, a situation that
is hard to predict and avoid.The measured throughput	ܾ of
connection i is obtained and updated for every RTTi, where
RTTi is the RTT of connection i . For every RTTi on
connection i , we obtain a sample of current throughput,
denoted as ܾ௦ , calculated as the total number of received
bytes divided by the time interval RTTi .We smooth the
measured throughput using the exponential filter as
 b୧,୬ୣ୵୫ =max (b୧ୱ ,β*b୧,୭୪ୢ୫ +(1-β)*b୧ୱ (2)

β is the exponential factor, and the default value of β is set
to 0.75. Note that the max procedure here is to update

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1905

quickly if the receive window is increased, especially when
the receive window is doubled. The expected throughput of
connection i is obtained as
 ܾ = ,ܾ)	ݔܽ݉ i/RTTi) (3)݀݊ݓݎ

 where ݀݊ݓݎi is the receive window of connection i. We
have the max procedure to ensure	ܾ ≤ ܾ.We define the
ratio of throughput difference ݀	as the ratio of the
difference of the measured and expected throughput over
the expected one for connection i
 																																						݀ = ି . (4)

By definition, we haveܾ ≤ ܾ , thus 	݀€[0,1]. We have
two thresholds γ1andγ2 (γ2>γ1) to differentiate three cases
for receive window adjustment:

1) ݀ ≤ γ1or ݀ ≤ MSSi/rwndi

2 : Increases the receive
window if it is in the global second subslot and there is
enough quota of available bandwidth on the network
interface; decreases the quota correspondingly if the receive
window is increased.

2) ݀ > γ2 :Decrease the receive window by 1 MSS3 if this
condition holds for three continuous RTT. The minimal
receive window is 2*MSS.

3) Otherwise, keep the current receive window.The
available bandwidth calculated at the end of the first subslot
is used for the quota of the second subslot right after the
first one. The potential throughput increase of connection is
estimated as the increase in the receive window divided by
RTTi .The quota is consumed by First Come First Service
(FIFS), determined by the order of ACKs sent on the
second subslot.In all of our experiments, we had γ1=0.1 and
γ2=0.5 . Similar to TCP’s congestion window increase at
the sender, the increase of the receive window on any
ICTCP connection consists of two phases: slow start and
congestion avoidance. If there is enough quota in the slow
start phase, the receive window is doubled, while it is
enlarged by atmost oneMSS in the congestion avoidance
phase. A newly established or prolonged idle connection is
initiated in the slow start phase. Whenever the second and
third conditions are met, or the first condition is met but
there is not enough quota on the receiver side, the
connection goes into the congestion avoidance phase.

D Fairness Controller for Multiple Connections

When the receiver detects that the available bandwidth has
become smaller than the threshold, ICTCP starts to
decrease the receiver window of the selected connections to
prevent congestion. Considering that multiple active TCP
connections typically work on the same job at the same
time in a data center, we have sought a method that can
achieve fair sharing for all connections without sacrificing
throughput. Note that ICTCP does not adjust the receive
window for flows with an RTT larger than 2 ms, so
fairness is only considered among low-latency flows.

In our experiment, we decrease the receive window for
fairness when BWA <0.2C. This condition is designed for
high band width networks, where link capacity is
underutilized most of the time. If there is still enough
available bandwidth, we argue that the requirement of better
fairness is not strong considering the potential impact on
achieved throughput when decreasing the receive window.
The purpose of the 0.2C gap is to leave enough room for
other flows to increase their receive window, and should be
larger than the increased throughput when the receive
window of a flow is increased by 1 MSS.We adjust the
receive window to achieve fairness for incoming TCP
connections with low latency as follows: 1) For a window
decrease, we cut the receive window by 1 MSS, for some
selected TCP connections. We select those connections that
have a receive window larger than the average window
value of all connections. 2) For a window increase, this is
automatically achieved by our window adjustment
described in this Section , as the receive window is only
increased by 1 MSS during congestion avoidance. In
principle, the receive window decrease only happens when
the available bandwidth on that interface is small.
Furthermore, the connection with the larger receive window
is decreased slightly to achieve fairness. If all connections
happen to have the same receive window, then none of
them decrease the receive window.
Readers may raise some questions concerning our
interpretation of fairness to address a congestion control
scheme.TCP uses additive increase multiplicative decrease
(AIMD) to achieve both stability and fairness among flows
sharing the same bottleneck. However, MD happens only
when packet loss is observed for a TCP connection. In
DCTCP, packet loss during incast congestion due to buffer
overflow is largely eliminated.
Consider a scenario in which some flows have a large
receive window (because they started earlier) while others
have a much smaller receive window (because they started
later), and the link capacity is almost reached. In this case,
none of the connections can increase their receive windows
as there is not enough available bandwidth. This situation
may persist as long as there is no packet loss so that
unfairness between flows becomes an issue. Therefore, we
propose slightly reducing the receive window for flows that
have a larger receive window, and the throughput of all
TCP connections should smoothly converge.

CONCLUSIONS

This implemented the ICTCP to improve TCP
performance for TCP incast in many-to-many data-center
networks. In contrast to previous approaches that used a
fine-tuned timer for faster retransmission, we focus on a
receiver-based congestion control algorithm to prevent
packet loss. ICTCP adaptively adjusts the TCP receive
window based on the ratio of the difference of achieved and
expected per-connection throughputs over expected
throughput, as well as the last-hop available bandwidth to
the receiver. In future, the proposed mechanism can be
implemented in real time data centers and then evaluate
their performance.

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1906

ACKNOWLEDGMENT

The authors are grateful to express sincere thanks and
gratitude to our Professor and HOD, Dr.E.Poovammal,
Department of Computer Science and Engineering, SRM
University for her encouragement and the facilities that
were offered to me for carrying out this project. And we
take this opportunity to thank our Director,
Dr.C.Muthamizchelvan, Ph.D, Faculty of Engineering and
Technology, SRM University for providing us with
excellent infrastructure that is required for the development
of our project.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” in Proc. OSDI, 2004, p. 10.
[2] M. Alizadeh, A. Greenberg, D.Maltz, J. Padhye, P. Patel,

B.Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proc. SIGCOMM, 2010, pp. 63–74.

[3] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
storage cluster: Delivering scalable high bandwidth storage,” in
Proc. SC, 2004, p. 53

[4] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger,
G. Gibson, and S. Seshan, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in Proc.
USENIX FAST, 2008, Article no. 12

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. ACM SIGCOMM,
2009, pp. 63–74.

[6] R. Prasad, M. Jain, and C. Dovrolis, “Socket buffer auto-sizing for
high-performance data transfers,” J. Grid Comput., vol. 1, no. 4, pp.
361–376, 2003.

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data center networks,” in Proc. CoNEXT, 2010,
Article no. 13

[8] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol.
13, no. 8, pp. 1465–1480, Oct. 1995.

[9] R. Braden, “Requirements for internet hosts—Communication
layers,” RFC1122, Oct. 1989.

[10] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC1323, May 1992.

[11] Y. Chen, R. Griffith, J. Liu, R. Katz, and A. Joseph, “Understanding
TCP incast throughput collapse in datacenter networks,” in Proc.
WREN, 2009, pp. 73–82.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACMSIGCOMM, 2008,
pp.

[13] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol.
13, no. 8, pp. 1465–1480, Oct. 1995.

[14] http://en.wikipedia.org/wiki/TCP_congestion-avoidance_algorithm.

Samba Siva Reddy Maripalli et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1903-1907

www.ijcsit.com 1907

